Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
نویسندگان
چکیده
منابع مشابه
Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group⋆
We describe the reduction procedure for a symplectic Lie algebroid by a Lie subalgebroid and a symmetry Lie group. Moreover, given an invariant Hamiltonian function we obtain the corresponding reduced Hamiltonian dynamics. Several examples illustrate the generality of the theory.
متن کاملLie Algebroids and Lie Pseudoalgebras
Lie algebroids and Lie pseudoalgebras arise from a wide variety of constructions in differential geometry; they have been introduced repeatedly into the geometry, physics and algebra literatures since the 1950s, under some 14 different terminologies. The first main part (Sections 2-5) of this survey describes the four principal classes of examples, emphazising that each arises by means of a gen...
متن کاملHorizontal Subbundle on Lie Algebroids
Providing an appropriate definition of a horizontal subbundle of a Lie algebroid will lead to construction of a better framework on Lie algebriods. In this paper, we give a new and natural definition of a horizontal subbundle using the prolongation of a Lie algebroid and then we show that any linear connection on a Lie algebroid generates a horizontal subbundle and vice versa. The same correspo...
متن کاملOn Contact and Symplectic Lie Algeroids
In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications
سال: 2007
ISSN: 1815-0659
DOI: 10.3842/sigma.2007.049